Coordinator(s) | Updated |
---|---|
Paul Valdes / BRIDGE | 03/14/2005 |
Note: the list of required variables is not stable yet. You will find in the tables below the variables that are likely to be found in the database, and the variables that were suggested as useful but did not make it to the final list.
Name(s) | Units | Description | Axes | Frequency | DB | |||
---|---|---|---|---|---|---|---|---|
DA | MO | SE | AN | |||||
orog surface_altitude |
m | Orography | XY | 1 | A1b1 | |||
sftlf land_area_fraction |
% | Surface type % land | XY | 1 | A1b2 | |||
sftgif land_ice_area_fraction |
% | Surface type % glacier | XY | 1 | A1b3 | |||
ta air_temperature |
K | Air temperature | XYPT | Pbm | P3 | P17 | A1c2 A2b1 |
|
tas air_temperature |
K | 2m air temperature | XYT | O | O | O | A1a3 A2a5 A3_3 |
|
tasmin air_temperature |
K | Daily minimum surface (2m) temperature | XYT | O | O | O | A1f5 A2a3 |
|
tasmax air_temperature |
K | Daily maximum surface (2m) temperature | XYT | O | O | O | A1f6 A2a4 |
|
ts surface_temperature |
K | Surface skin temperature | XYT | O | O | A1a15 | ||
pr precipitation_flux |
kg m-2 s-1 | Total precipitation | XYT | O | O | O | A1a2 A2a2 A3_2 |
|
prc convective... ..._precipitation_flux |
kg m-2 s-1 | Convective precipitation | XYT | O | O | A1a18 | ||
[evspsbl] [water_evaporation_flux] |
kg m-2 s-1 | Total surface evaporation | XYT | O | O | P | ||
[sbls] [water_sublimation_flux] |
kg m-2 s-1 | Sublimation (per unit area) | XYT | O | O | A1 | ||
prw atmosphere... ..._water_vapor_content |
kg m-2 | Precipitable water | XYT | O | A1a19 | |||
cl cloud_area_fraction... ..._in_atmosphere_layer |
% | Cloud cover | XYPT | P17 | A1c1 | |||
clivi atmosphere... ..._cloud_ice_content |
kg m-2 | Cloud ice | XYT | O | A1a44 | |||
clt cloud_area_fraction |
% | Total cloud cover | XYT | O | O | A1a42 | ||
clwvi atmosphere... ..._cloud_condensed... ..._water_content |
kg m-2 | Cloud liquid water | XYT | O | A1a43 | |||
snc surface_snow... ..._area_fraction... ..._where_land |
% | Snow cover | XYT | O | O | A1a24 | ||
snd surface... ..._snow_thickness |
m | Snow depth | XYT | O | O | A1a8 | ||
snm surface... ..._snow_melt_flux... ..._where_land |
kg m-2 s-1 | Snow melt | XYT | O | O | A1a25 | ||
ps surface_air_pressure |
Pa | Surface pressure | XYT | O | O | A1a16 | ||
psl air_pressure... ..._at_sea_level |
Pa | Air pressure at sea level | XYT | O | O | A1a1 A2a1 A3_1 |
||
zg geopotential_height |
m | Geopotential height | XYPT | Pm | P3 | P17 | A1c7 | |
[intuaw] [vertical_integral... ..._eastward_wind... ..._by_total_water] |
kg m-1 s-1 | Vertically integrated Eastward moisture transport Mass_weighted_vertical integral of the product of eastward wind by total water mass per unit mass |
XYT | O | O | |||
[intvaw] [vertical_integral... ..._norhward_wind... ..._by_total_water] |
kg m-1 s-1 | Vertically integrated Northward moisture transport Mass_weighted_vertical integral of the product of northward wind by total water mass per unit mass |
XYT | O | O | |||
[intuadse] [vertical_integral... ..._eastward_wind... ..._by_dry... ..._static_energy] |
1.e6 m-1 s-1 J | Vertically integrated Eastward dry transport (cp.T +zg).u Mass_weighted_vertical integral of the product of northward wind by dry static_energy per mass unit |
XYT | O | O | |||
[intvadse] [vertical_integral... ..._northward_wind... ..._by_dry... ..._static_energy] |
1.e6 m-1 s-1 J | Vertically integrated Northward dry transport (cp.T +zg).v Mass_weighted_vertical integral of the product of northward wind by dry static_energy per mass unit |
XYT | O | O | |||
hus specific_humidity |
kg kg-1 | Specific humidity | XYPT | Pb | P3 | P17 | A1c5 A2b4 |
|
hur relative_humidity |
% | Relative humidity | XYPT | P17 | A1c8 | |||
huss specific_humidity |
kg kg-1 | Surface specific humidity (2m) | XYT | O | O | A1a28 | ||
[hurs] relative_humidity |
% | Surface relative humidity (2m) | XYT | O | P | |||
ua eastward_wind |
m s-1 | Eastward wind | XYPT | Pbt | P3 | P17 | A1c3 A2b2 |
|
va northward_wind |
m s-1 | Northward wind | XYPT | Pbt | P3 | P17 | A1c4 A2b3 |
|
wap lagrangian_tendency... ..._of_air_pressure |
Pa s-1 | Pressure vertical velocity (omega) | XYPT | Pm | P3 | P17 | A1c6 | |
uas eastward_wind |
m s-1 | Surface (10m) eastward wind | XYT | O | A1a26 A2a12 |
|||
vas northward_wind |
m s-1 | Surface (10m) northward wind | XYT | O | A1c4 A2b3 |
|||
hfls surface_upward... ..._latent_heat_flux |
W m-2 | Heat flux latent surface | XYT | O | O | A1a9 A2a6 A3_4 |
||
hfss surface_upward... ..._sensible_heat_flux |
W m-2 | Heat flux sensible surface | XYT | O | O | A1a10 A2a7 A3_5 |
||
[hfns ?] [surface_downward... ..._heat_flux_in_air] |
W m-2 | Heat flux net surface | XYT | O | A | |||
[albs] surface_albedo |
1 | Surface albedo | XYT | O | O | A2 | ||
rsds surface_downwelling... ..._shortwave_flux... ..._in_air |
W m-2 | SW radiation incident at the surface | XYT | O | A1a13 A2a10 A3_8 |
|||
rsdscs surface_downwelling... ..._shortwave_flux... ..._in_air... ..._assuming_clear_sky |
W m-2 | SW radiation incident at the surface clear sky | XYT | O | A1a37 | |||
rsus surface_upwelling... ..._shortwave_flux... .._in_air |
W m-2 | SW radiation upward (reflected) surface | XYT | O | A1a14 A2a11 A3_9 |
|||
rsuscs surface_upwelling... .._shortwave_flux... .._in_air... .._assuming_clear_sky |
W m-2 | SW radiation upward (reflected) surface clear sky | XYT | O | A1a38 | |||
rss surface_net_downward... ..._shortwave_flux |
W m-2 | SW radiation net surface | XYT | O | O | A | ||
[rsscs] [surface_net_downward... ..._shortwave_flux... .._assuming_clear_sky] |
W m-2 | SW radiation net surface clear sky | XYT | O | O | A | ||
rsdt toa_incoming... ..._shortwave_flux |
W m-2 | SW radiation downward TOA (ONLY 1 seasonal cycle is needed) |
XY-1 | O | A1a29 | |||
rsut toa_outgoing... ..._shortwave_flux |
W m-2 | SW radiation upward TOA | XYT | O | A1a30 | |||
rsutcs toa_outgoing... ..._shortwave_flux... ..._assuming_clear_sky |
W m-2 | SW radiation upward TOA clear sky | XYT | O | A1a41 | |||
rst toa_net_downward... ..._shortwave_flux |
W m-2 | SW radiation net TOA | XYT | O | O | A | ||
[rstcs] [toa_net_downward... ..._shortwave_flux... .._assuming_clear_sky] |
W m-2 | SW radiation net TOA clear sky | XYT | O | O | A | ||
rlds surface_downwelling... ..._longwave_flux... ..._in_air |
W m-2 | LW radiation downward surface | XYT | O | A1a11 A2a8 A3_6 |
|||
rldscs surface_downwelling... ..._longwave_flux... ..._in_air... ..._assuming_clear_sky |
W m-2 | LW radiation downward surface clear sky | XYT | O | A1a39 | |||
rlus surface_upwelling... ..._longwave_flux... ..._in_air |
W m-2 | LW radiation upward surface | XYT | O | A1a12 A2a9 A3_7 |
|||
rls surface_net_downward... ..._longwave_flux |
W m-2 | LW radiation net surface | XYT | O | O | A | ||
[rlscs] [surface_net_downward... ..._longwave_flux... .._assuming_clear_sky] |
W m-2 | LW radiation net surface clear sky | XYT | O | O | A | ||
rlut toa_outgoing... ..._longwave_flux |
W m-2 | LW radiation outgoing TOA | XYT | O | O | A1a31 A2a14 |
||
rlutcs toa_outgoing... ..._longwave_flux... ..._assuming_clear_sky |
W m-2 | LW radiation outgoing TOA clear sky | XYT | O | O | A1a40 | ||
rtmt net_downward... ..._radiative_flux... ..._at_top_of... ..._atmosphere_model |
W m-2 | Net radiation at model top | XYT | O | A1a32 | |||
Number of variables: 59 | ||||||||
Estimated database size | ||||||||
DA: 4 DA-3D-1-850: 1 DA-3D-1-500: 2 DA-3D-2-850-200: 2 DA-3D-2-850-500: 1 | 7312.5 Mb / 50 year(s) | |||||||
MO: 30 MO-3D-3: 6 MO-fixed: 3 | 1800.1 Mb / 100 year(s) | |||||||
SE: 48 SE-3D-17: 8 | 69.0 Mb | |||||||
DB STORAGE REQUIRED = 9.0 Gb | ||||||||
These variables require a lot of storage space and will not be stored in the PMIP 2 database, at least not at the beginning of the project. Each group should tell if they will be able to provide this data for about YY years of experience, and keep them in their lab until the data is needed.
The variables required at sub-daily timesteps are needed by an
offline dust model to validate MPI-BGC LGM experiments.
The required atmosphere variables are: orog, ts, pr, prc,
cl, clt, snc, uvas (this name, for surface wind speed, may change),
ua, va, ps, evs, tas, ta, hus and FPAR.
The required vegetation variable is: mrso.
For the sub-daily values, indicated frequencies are the
acceptable frequencies, the ideal frequencies being
twice the accepted ones (e.g. when 6-hourly is acceptable and will
work, 3-hourly would be ideal).
The fields should be saved for at least 10 model years, for OA and OAV
simulations it might be better to have 20 years. To avoid getting data
for some decadal-type anomaly, we could randomly sample the model
years during the analytical period.
The following table lists the variables that either are not
required at all at DAily frequency in the PMIP 2
database, or are not required at a high enough frequency (sub-DAily)
for the dust model.
Note that the dust model also requires one variable from the vegetation variables: mrso.
Please get in touch with Sandy Harrison if
you want more details about this!
Name(s) | Units | Description | Axes | Frequency | DB | |||
---|---|---|---|---|---|---|---|---|
DA | MO | SE | AN | |||||
ta | K | Air temperature | XYPT | P17! | A | |||
tas | K | 2m?/1.5m? air temperature | XYT | O! | A | |||
ts | K | Ground surface temperature (surface skin temperature?) | XYT | O | A | |||
prc | kg m-2 s-1 | Convective precipitation | XYT | O! | A | |||
evs | kg m-2 s-1 | Surface evaporation | XYT | O! | P | |||
cl | 100 | Cloud cover | XYPT | P17! | A | |||
clt | 100 | Total cloud cover | XYT | O | A | |||
snc | 100 | Snow cover | XYT | O | A | |||
ps | Pa | Surface pressure | XYT | O! | A | |||
hus | kg kg-1 | Specific humidity | XYPT | P17! | A | |||
[uvas] [wind_speed] |
m s-1 | Surface wind speed (10m) | XYT | O!! | ||||
ua | m s-1 | Eastward wind | XYPT | P17! | A | |||
va | m s-1 | Northward wind | XYPT | P17! | A | |||
[fpar] [fraction_photosynthetic_active_radiation] |
1 | Fraction of Photosynthetic Active Radiation for OAV models with prognostic vegetation (better define: SW rad below 690 nm?) |
XYT | O | O | |||
Number of variables: 14 | ||||||||
Estimated database size | ||||||||
DA: 4 DA-12h: 4 DA-6h: 1 DA-3D-17-12h: 5 | 104625.0 Mb / 50 year(s) | |||||||
MO: 1 | 37.5 Mb / 100 year(s) | |||||||
DB STORAGE REQUIRED = 102.2 Gb | ||||||||
The following table lists the variables that are required at
sub-DAily frequency (at least two times daily : noon and midnight) by
the NCAR RegCM regional climate model. The orography is also required,
but it can be found in the regular variables of the PMIP 2 database.
Note that the RegCM model also requires a variables from the ocean variables: tos.
Please get in touch with Noah Diffenbaugh if
you want more details about this!
Name(s) | Units | Description | Axes | Frequency | DB | |||
---|---|---|---|---|---|---|---|---|
DA | MO | SE | AN | |||||
ts | K | Ground surface temperature (surface skin temperature?) | XYT | O! | A | |||
ta | K | Air temperature | XYPT | P17! | A | |||
hus | kg kg-1 | Specific humidity | XYPT | P17! | A | |||
zg | m | Geopotential height | XYPT | P17! | A | |||
ps | Pa | Surface pressure | XYT | O | A | |||
ua | m s-1 | Eastward wind | XYPT | P17! | A | |||
va | m s-1 | Northward wind | XYPT | P17! | A | |||
Number of variables: 7 | ||||||||
Estimated database size | ||||||||
DA: 1 DA-12h: 1 DA-3D-17-12h: 5 | 97312.5 Mb / 50 year(s) | |||||||
DB STORAGE REQUIRED = 95.0 Gb | ||||||||
Name(s) | Units | Description | Axes | Frequency | DB | |||
---|---|---|---|---|---|---|---|---|
DA | MO | SE | AN | |||||
vorpot | 1 | Potential vorticity on pressure levels | XYPT | |||||
uvas ? | m s-1 | Surface wind speed (10m) | XYT | |||||
uaq ? | kg m-1 s-1 ? | Eastward moisture transport | XYPT | |||||
vaq ? | kg m-1 s-1 ? | Northward moisture transport | XYPT | |||||
uacptazg ? | W m-1 ? | Eastward dry transport (cp.T +zg).u | XYPT | |||||
vacptazg ? | W m-1 ? | Northward dry transport (cp.T +zg).v | XYPT | |||||
tauugwd | N m-2 | GWD induced eastward surface wind stress (positive for eastward wind) | XYT | A1 | ||||
tauvgwd | N m-2 | GWD induced northward surface wind stress (positive for northward wind) | XYT | A1 | ||||
torts | N m-1 | Total surface torque (including mountain torque) | XYT | A1 | ||||
moa | kg s-1 | Total relative angular momentum (per unit area) | XYT | A1 | ||||
[mfs] [???] |
kg m-2 s-1 | Surface-atmosphere turbulent moisture flux (positive upwards) |
XYT | O | O | |||
Number of variables: 11 | ||||||||
Estimated database size | ||||||||
MO: 1 | 37.5 Mb / 100 year(s) | |||||||
SE: 1 | 0.4 Mb | |||||||
DB STORAGE REQUIRED = 0.0 Gb | ||||||||
Variables moved to the Ocean Variables' list | ||||||||
tauu | N m-2 | Eastward surface wind stress (positive for eastward wind) | XYT | A | ||||
tauv | N m-2 | Northward surface wind stress (positive for northward wind) | XYT | A | ||||
Number of variables: 2 | ||||||||
Variables moved to the Land-surface and vegetation Variables' list | ||||||||
rlength | m | Surface roughness length for turbulent heat and moisture fluxes (XY+T if veget varies) |
XY | |||||
soiltemp | K | Average layer soil temperature | XYT | G | ||||
fdepth | m | Frozen soil depth | XYT | G | ||||
tdepth | m | Depth to soil thaw | XYT | G | ||||
evap | kg m-2 s-1 | Total evapotranspiration | XYT | G | ||||
potevap | kg m-2 s-1 | Potential evapotranspiration | XYT | G | ||||
mrso | kg m-2 | Soil moisture (in the top meter? at root depth?) | XYT | A | ||||
mrros | kg m-2 s-1 | Surface runoff rate | XYT | A | ||||
mrro | kg m-2 s-1 | Total runoff rate (including drainage) | XYT | A | ||||
Number of variables: 9 |
At the Hadley Centre, we are not in a position to provide Potential Evapotranspiration for the time being. It is necessary to know whether this is an absolutely necessary variable for Sandy's model.
To be discussed:
XYZT fields in sub-daily mode will take a lot of place. I propose
to provide them for the last year, only. A climatological year
wouldn't be helpful because this would smooth out the extreme
events.
Also, I would urge people to review the need for daily outputs (this
may be useful for some studies, e.g. storm tracks). Can we decide to
provide the daily outputs of all suggested fields for the last 5
years, only?
Rough estimate:
X * Y * Z = in HadAM3 about 131 K
one data = 2 bytes ==> 1 3-D field for one timestep = 262 Kb
6 3-D fields for one time step = 1.5 Mb
1 year at 3-hourly frequency = 360 * 8 = 2880 timestep.
2880 timesteps * 10 Mb = 4.3 Gb.... for one model
20 model years = almost 84 Gb my model
Do we have that much space?
20 years at daily frequency = 10.5 Gb
20 years at monthly frequency = 360 Mb
20 years sat seasonal frequency = 72 Mb
20 years at annual frequency = 30 Mb